
QUICK GUIDE PART 1: TYPE IIS CLONING WITH THE STANDARD PLANT SYNTAX AND THE GOLDEN GATE MoCIo PLASMIDS

NOTE: THIS IS QUICK REFERENCE GUIDE - IF YOU ARE A NOVICE PLEASE START BY WATCHING THE VIDEOS AT http://synbio.tsl.ac.uk/golden-gate/ TO LEARN HOW TO DESIGN PRIMERS FOR CONSTRUCTING NEW STANDARD PARTS (LEVEL 0 PARTS) PLEASE SEE PART 2

HOW THE ONE-POT REACTION WORKS

Bsal GGTCTCNNNNN NNNGAGACC CCAGAGNNNNN NNNNNCTCTGG

Type IIS enzymes cut outside of their recognition site. This allows you you to assemble multiple parts at the same time. This is what happens when you assemble three level O parts (Part 1, 2 and 3) into a Level 1 acceptor:

Providing that you put level O parts with compatible ends into the tube at a 2:1 molar ratio to the level 1 acceptor plasmid they will assemble in order. To enable this we use standard overhangs for each type of part. See the common syntax at the top of the next column.

MAKING MULTIGENE CONSTRUCTS

There are seven Level I acceptors. All are binary plasmids. You can assemble up to six in a level 2 or M acceptor. These will assemble in order using Bpil. The Bpil overhangs are different to the Bsal overhangs. They are not defined in the standard syntax. The Level I acceptor that you choose to assemble your standard parts into will determine the position of that transcriptional unit in your multigene assembly.

To use the MoClo Lveel M and 2 acceptor plasmids your first transcriptional unit must be in position I. You also need to use the correct End Linker (EL) to join to the last Level I transcriptional unit to the acceptor (see diagram above).

Any Level I transcriptional unit can be substituted for a dummy.

The COMMON SYNTAX for plants defines the 4 base-pair overhangs or fusion sites that ioin basic, standard parts.

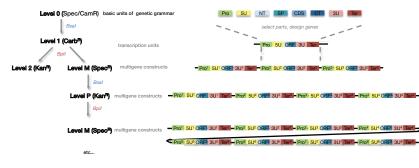
These sites allow a multitude of standard parts to be generated.

Standard parts comprise any portion of a gene cloned into a plasmid flanked by a convergent pair of Bsal recognition sequences

Parts can comprise the region between an adjacent pair of fusion sites. Alternatively, to reduce complexity or when a particular functional element is not required, parts can span multiple fusion sites (examples in pink boxes).

GGA	G TGAC T	CCC TACT	CCAT(g) AATG	AGCC Gly AGGT	TTCG (*)G	CTT GG	TA	CGCT
	DIST PRO		UTR NTAG	CDS1 CDS	2 CTAG	3UTR	TERM	
1		PROM + 5UT	R	CDS		301	R + TERM	
	A1 A2	A3	B1 B2	B3 B4	B5	B6	C1	
	POSITION	NAME	FUNCI	ION	ovi	5' ERHANG	3' OVERHAN	G
	A1	DIST	Distal promoter re or transcription	egion, <i>cis</i> regu onal enhancer	lator G	GAG	TGAC	
	A2	PROX	Proximal promoter or transcriptic		ulator T	IGAC	TCCC	
	A3	CORE	Minimal promoter transcription s			rccc	TACT	
29.	A4	5UTR	5' untransla	ted region	٦	FACT	CCAT	
	B2	NTAG	N terminal co	oding region	C	CCAT	AATG	
	B3	CDS1	Coding regio N terminal co		F	AATG	AGCC /AGGT	
	B4	CDS2	Coding regio or stop			AGCC AGGT	TTCG	
	B5	CTAG	C terminal co	oding region	T	TTCG	GCTT	
	B6	3UTR	3' untransla	ated region	C	GCTT	GGTA	
	C1	TERM	Transcription tern polyadenylatio			GGTA	CGCT	

CODING SEQUENCE


5'UTR

SUMMARY

Basic, standard parts are known as "Level O parts".

Level O modules are assembled into transcriptional units in "Level I acceptors".

Level I transcriptional units are assembled into multigene constructs in either "Level 2 acceptors" or Level M acceptors. Level M constructs can be assembled with other level Level M constructs into Level P acceptors to make very large multi-gene constructs:

THE DIGESTION-LIGATION PROTOCOL

This protocol assumes that:
(a) All parts being assembled are free of internal Bsal and Bpil recognition sequences
(b) That the junctions of all parts being assembled have a unique set of compatible overhangs
(c) Your acceptor plasmid has a different antibiotic resistance to all of the modules being assembled into it

The restriction buffer protocol is shorter and works sufficiently well for short/easy assemblies. We find that the longer ligase buffer protocol is generally more efficient, especially for large (Level 2+) assemblies. We have had many problems with NEB restriction enzymes and do not use or recommend them for these reactions. If your B.S.A. is shipped as a IOOX stock this should be diluted in water to make a IOX working stock. Add the following to a PCR tube, make the reaction volume up to $20 \,\mu$ l with sterile distilled water and cycle as shown.

To assemble fragments in Level O, Level 2 and Level M acceptors Bpil is required.

•	100-200 ng of acceptor plasmid	100-200 ng of acceptor plasmid
•	Plasmids containing each module/ part to be inserted. Use a 2:1 molar ratio of insert:acceptor.	 Plasmids containing each module/ part to be inserted. Use a 2:1 molar ratio of insert:acceptor.
•	10 units <i>Bpi</i> l (1µl of 10U/µl <i>Bpil</i> , ThermoFisher)	 1.5µl T4 Ligase Buffer (NEB)
•	2 µl Buffer G (ThermoFisher)	 1.5 µl Bovine Serum Albumin (10x) 200 units T4 DNA Ligase
•	400 units T4 DNA Ligase (1µl of 400U/µl, NEB)	(0.5µl of 400U/µl, NEB) • 5 units <i>Bol</i> l
	2 ul 10mM ATP (not dATP!!!!)	(0.5ul of 10U/ul Bpil. ThermoFisher)
	10 minutes 37°C X3 10 minutes 16°C X3 10 minutes 37°C 20 minutes 65°C 16°C	20 seconds 37°C 3 minutes 37°C 4 minutes 16°C 5 minutes 80°C 5.00 16°C
ass	emble fragments Pacceptors Bsal	in Level -1, Level 1 and

nort protocol in restriction buffe	Long protocol in ligase buffe
100-200 ng of acceptor plasmid Plasmids containing each module/ part to be inserted. Use a 2-1 molar ratio of inserta.cosptor. 10 units Bas (Eco31) (1) uf 10U/µl Bas (Eco31) 2 µl buffer G 400 units T4 DNA Ligase (1µl of 400U/µl, NEB) 2 µl 10mM ATP	100-200 ng of acceptor plasmid Plasmids containing each module/ part to be inserted. Use a 2.1 molar ratio of insert acceptor. 1. Siji 17 Ligase buffer (NEB) 1. Sjul Bovine Serum Albumin (10x) 200 units 14 DNA Ligase (0.5 jul of 400/Ujul NEB) 5. units Bsa/ (Eco31) (0.5 jul of 10U/uji Thermo Fisher)
10 minutes 40°C	20 seconds 37°C 3 minutes 37°C 4 minutes 16°C x26